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Elastic moduli, dislocation core energy, and melting of hard disks in two dimensions
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Elastic moduli and dislocation core energy of the triangular solid of hard disks of diameters are obtained
in the limit of vanishing dislocation-antidislocation pair density, from Monte Carlo simulations that incorporate
a constraint, namely that all moves altering the local connectivity away from that of the ideal triangular lattice
are rejected. In this limit we show that the solid is stable against all other fluctuations at least up to densities
as low asrs250.88. Our system does not show any phase transition so diverging correlation lengths leading
to finite size effects and slow relaxations do not exist. The dislocation pair formation probability is estimated
from the fraction of moves rejected due to the constraint which yields, in turn, the core energyEc and the
~bare! dislocation fugacityy. Using these quantities, we check the relative validity of first order and Kosterlitz-
Thouless-Halperin-Nelson-Young~KTHNY ! melting scenarios and obtain numerical estimates of the typical
expected transition densities and pressures. We conclude that a KTHNY transition from the solid to a hexatic
phase preempts the solid to liquid first order transition in this system albeit by a very small margin, easily
masked by crossover effects in unconstrained ‘‘brute- force’’ simulations with a small number of particles.

PACS number~s!: 64.60.Fr, 64.70.Dv, 05.10.2a, 05.10.Cc
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I. INTRODUCTION

One of the first continuous systems to be studied by co
puter simulations@1,2# is the system of hard disks interactin
with the two-body potential,

V~r !5`, r<s

V~r !50, r .s, ~1!

wheres, the hard disk diameter~taken to be 1 in the rest o
the paper!, sets the length scale for the system and the ene
scale is set bykBT51. Despite its simplicity@3#, this system
was shown to undergo a phase transition from solid to liq
as the densityr was decreased. The nature of this pha
transition, however, is still being debated. Early simulatio
@2,4# always found strong first order transitions. As comp
tational power increased the observed strength of the
order transition progressively decreased. Using sophistic
techniques Lee and Strandburg@5# and Zollweg and Cheste
@6# found evidence for, at best, a weak first order transiti
A first order transition has also been predicted by theoret
approaches based on density functional theory@7#. On the
other hand, recent simulations of hard disks@8# by Jaster,
using as many asN565 536 particles, find evidence for
continuous, Kosterlitz-Thouless-Halperin-Nelson-You
~KTHNY ! transition@9# from liquid to a hexatic phase, with
orientational order but no translational order, atr50.899.
Nothing could be ascertained, however, about the expe
hexatic to the crystalline solid transition at higher densit
because the computations became prohibitively expens
The solid to hexatic melting transition was estimated to
cur at a densityrc>0.91. A priori, it is difficult to assess
why various simulations give contradicting results conce

*On leave from Material Science Division, Indira Gandhi Cen
for Atomic Research, Kalpakkam 603102, India.
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ing the order of the transition. In this paper we take an
proach complementary to Jaster’s, and investigate the m
ing transition of the solid phase. We show that the hard d
solid is unstable to perturbations that attempt to produce
dislocations leading to a solid→hexatic transition in accor-
dance with KTHNY theory@9#. Though this has been at
tempted in the past@10,11#, numerical difficulties, especially
with regard to equilibration of defect degrees of freedo
makes this task highly challenging. We also show that t
transition lies close to a first order solid to liquid meltin
line. We calculate quantitatively the relative positions of t
first order and the KTHNY transitions in the parameter spa
for this system and explain why earlier simulations failed
arrive at a consensus.

The coarse grained density of a crystalline solid can
expanded asr(r )5(GrGeiG•r, where (G) is a reciprocal
lattice vector. The order parametersrG are complex, rG
5urGueiu•G, and the displacement vectoru is the deviation
of an atom from the nearest perfect lattice pointR. If fluc-
tuations of the amplitude ofrG can be neglected then a sol
can be described in terms ofu alone—the fundamental as
sumption of elasticity theory. The elastic Hamiltonian f
hard disks is given by

F52Pe11B/2e1
2 1~m1P!~e2/212exy!, ~2!

whereB is the bulk modulus. The quantityme f f5m1P is
the ‘‘effective’’ shear modulus~the slope of the shear stres
vs shear strain curve! and P is the pressure. The hard dis
solid, being a purely repulsive system, is always unde
uniform hydrostatic pressureP(r) at any densityr. The La-
grangian elastic strains are defined as

e i j 5
1

2 S ]ui

]Rj
1

]uj

]Ri
1

]ui

]Rk

]uk

]Rj
D , ~3!

where the indicesi , j go overx and y and finally, e15exx
1eyy , ande25exx2eyy .
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In general a solid possesses two types of excitatio
‘‘smooth’’ phonons and ‘‘singular’’ dislocations, respec
tively. Long wavelength phonons inhibit long range order
two-dimensional~2D! solids so that the intensity of a Brag
reflection peakI G;e22WG, where the Debye-Waller facto
WG;G2a22d/(d22) (a is the lattice parameter andd the
number of spatial dimensions! diverges and order paramet
correlations decay algebraically—an example of quasi-lo
ranged order~QLRO!. We know that singular excitations
like dislocations, can drive a QLRO→disorder transition
~where correlations decay exponentially!. This situation has
been analyzed by the KTHNY theory@9#.

The KTHNY theory @9# is presented usually for a 2D
triangular solid underzero external stress. It is shown that
the dimensionless Young’s modulus of a two-dimensio
solid,

K5
8

A3r

m

$11m/~l1m!%
,

where m and l are the Lame´ constants, depends on th
fugacity of dislocation pairs,y5exp(2Ec), whereEc is the
core energy of the dislocation, and the ‘‘coarse-grainin
length scalel. This dependence is expressed in the form
the following coupled differential equations~the recursion
relations! for the renormalization ofK andy:

]K

] l
53py2eK/8pF1

2
I 0S K

8p D2
1

4
I 1S K

8p D G ,
]y

] l
5S 22

K

8p D y12py2eK/16pI 0S K

8p D , ~4!

where I 0 and I 1 are Bessel functions. The thermodynam
value is recovered by taking the limitl→`.

We see in Fig. 1 that the trajectories in they-K plane can
be classified in two classes, namely those for whichy→0 as
l→` ~ordered phase! and thosey→` as l→` ~disordered
phase!. These two classes of flows are separated by li
called the separatrix. The transition temperatureTc ~or rc) is
given by the intersection of the separatrix with the line
initial conditions K(r,T) and y5exp@2Ec(K)# where Ec
;cK/16p. At the transition point the flow follows the sepa
ratrix so that therenormalized Kjumps from 16p to 0 at the
transition. The ordered phase corresponds to the solid~no

FIG. 1. Schematic flows of the coupling constantK and the
defect fugacityy under the action of the KTHNY recursion rela
tions. The dashed line is the separatrix whose intersection with
line of the initial state@solid line connecting filled circles,y(T,l
50),K21(T,l 50)# determines the transition pointTc .
s,

-

l

’
f

s

f

free dislocations! and the disordered phase is a phase wh
free dislocations proliferate. Proliferation of dislocation
however,does notproduce a liquid, rather a liquid crystallin
phase called a ‘‘hexatic’’ with quasi-long ranged~QLR! ori-
entational order but short-ranged positional order. Asecond
KT transition destroys QLR orientational order and takes
hexatic to the liquid phase by the proliferation of ‘‘disclina
tions’’ ~scalar charges!. Apart fromTc there are several uni
versal predictions from KTHNY theory; for example, th
order parameter correlation length and susceptibility has
sential singularities (;ebt2n

, t[T/Tc21) near Tc . All
these predictions can, in principle, be checked in simulati
@8#.

Note that, in order to use the KTHNY theory to study th
solid-hexatic transition in hard disks we have to bear in m
that for the hard disk solid, which is always under a unifo
hydrostatic pressureP(r), the effective shear modulusme f f
has to be used in the definition@11# of K.

The KTHNY theory predicts when a 2D solid becom
unstable to the proliferation of dislocations. However, the
is a second possibility. The free energy of the liquid m
become higher than that of the stable solid at a den
smaller than that where the hexatic phase is recorded.
leads to a first order transition and a jump in density at
liquid-solid coexistence pressure~for simulations in theNVT
ensemble! instead of an intermediate hexatic phase. Often
is very difficult to distinguish the two possibilities as th
history of simulation studies of hard disks shows. This
further complicated by the fact that KTHNY theory also pr
dicts that the specific heat, or equivalently, in the case of
hard disk system, the compressibility, shows a smooth bu
leading to a near flat region in the pressure-density diagr
In Fig. 2~a! we show the conventional situation where t
dotted line designates the often observed first order tra
tion. In Fig. 2~b! we show Jaster’s results where it is se
that instead of a flat region in theP-r curve or a Maxwell
loop usually associated with a first order transition one g
instead a smooth bending over to a state with a high co
pressibility. Finite size effects that would be present in t
first-order case are negligible. This would indicate the pr
ence of a liquid-hexatic transition. The question of solid
hexatic transition is still open. It is worth noting that detaile
finite size scaling of orientational order in this syste
@12,13# is not necessarily in contradiction to this result.

Why do simulations of hard disk solids find it so difficu
to see a solid-hexatic transition? One of the reasons is
course, the divergence of the correlation length as the sys
approaches the transition so that one requires large syst
This is complicated by the fact that in order to obtain equ
brated values of the dislocation density (}y) one also needs
very large simulation times because in a high density so
the diffusion of defects is very slow@14#. To illustrate this
point we have attempted to calculate the defect density
hard disk solid in a Monte Carlo simulation. We perfor
conventional Monte Carlo simulations in theNVT ensemble
with a usual Metropolis updating scheme forN53120 par-
ticles. We choose a single densityr50.92; a sequence o
initial states are then constructed by adding extra comp
rows of atoms~thereby increasing the density tor i>0.92)
and removing an equal number of atoms from the bulk
random. In equilibrium, these extra vacancies in the b

e
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should diffuse out and the lattice parameter adjust to fill
the gap. After about one million Monte Carlo steps we c
culate the number of five coordinated (n5) and seven coor-
dinated (n7) atoms. Since our system cannot have free
cancies ~due to our choice of ensemble! we expect in
equilibrium n55n7. The simulations at eachr i is repeated
for ten realizations of the initial state. Our results are sho
in Fig. 3. We see thatn5Þn7 ~except for the trivial case o
r i50.92), the difference growing withr i as expected and
the statistical errors are very large. We therefore concl
that even for a relatively small system of 3120 particles,
equilibration of defects~vacancies in this case! is an ex-
tremely slow process. So it should not come as a surp

FIG. 2. Equation of state of the hard disk liquid and solid.~a!
Liquid: light solid line, semiempirical form of Santoset al. @23#;
L, data from Alderet al. @24#. Solid: bold solid line, our results
1, data of Wojciechowski and Bran´ka @10#; dotted line, position of
coexistence pressure as seen in all studies observing a first
phase transition.~b! Expanded view of~a! near the phase transitio
region.L, results of Jaster@8# for 1283128 particles;1, same for
2563256 particles. Light solid line, polynomial fit to Jaster’s da
bold solid line, our data for the solid@as in ~a!#. Horizontal dotted
line: as in~a!, dotted curve; semiempirical form for the equation
state of the hard disk liquid of Santoset al. @23#. Arrows: lower
arrow, position of the KTHNY transition with bare values forK;
upper arrow, same with renormalizedKR calculated from our simu-
lations. Note that the accuracy of Jaster’s data is smaller than
size of the symbols forr<0.9, while for r.0.9 there may be
systematic finite size effects and finite observation time effects p
sibly invalidating the data.
-

-

n

e
e

se

that brute force simulations of the hard disk solid fail
produce the true equilibrium phase.

It may also happen, on the other hand, that KTHN
theory fails due to the following reasons. Firstly, elas
theory itself may fail near the transition, so that amplitude
long wavelength phonon fluctuations may destabilize
solid producing a continuous transition. Though remote, t
possibility has nevertheless been discussed in the litera
@15#. Secondly, perturbation theory iny may break down
becauseEc is too small~i.e., y too large! at the transition.
Saito @16# and Strandburg@17# showed, using lattice dis
cretized versions of a dislocation Hamiltonian, that KTHN
perturbation theory breaks down ifEc,2.7 at the transition.
In our simulations of the hard disk system we checkboth
these possibilities as well as the possibility of a first ord
transition.

In the next section we discuss our simulations toget
with our method for computing elastic constants and c
energies. We use these inputs to check for a first order t
sition and a KTHNY scenario in Sec. III. We summarize a
conclude this work in Sec. IV.

II. ELASTIC CONSTANTS AND DISLOCATION CORE
ENERGIES FROM CONSTRAINED SIMULATIONS

One way to circumvent the problem of large finite si
effects and slow relaxation due to diverging correlati
lengths is to simulate a system that is constrained to rem
defect~dislocation! free and, as it turns out, without a pha
transition. Relatively small systems simulated for short tim
therefore yield thermodynamically accurate data in this lim
Surprisingly, we show that by using this data it is possible
predict the expected equilibrium behavior of the unco
strained system. It is worth mentioning that with an approa
similar in spirit to the one followed here, we have obtain
excellent results for the Kosterlitz-Thouless transition in t
two-dimensional planar rotor model@18#, which has served
as an important model in the development of the KTHN
theory @9#, after the proofs of the low temperature suscep
bility divergence in this model@19# and the existence o

der

he

s-

FIG. 3. The number of hard disks with fivefold (n5 , L, and
light solid line! and sevenfold (n7 , 1, and bold solid line! coordi-
nation after 106 Monte Carlo steps per particle for anN53120
particle system, plotted againstr i ~see text!. Note thatn5Þn7 for r i

larger than 0.92.
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phase transitions without local order parameters in gen
@20# were given.

We simulateN53120 hard disks in an~almost! square
box. We have also simulated two additional systems oN
52016 andN54012 particles in order to look for residua
finite size effects. Our algorithm follows closely the usu
Metropolis scheme for simulating hard disks. The simulat
is always started from a perfect triangular lattice which
into our box—the size of the box determining the dens
Once a regular MC move is about to be accepted, we
form a local Delaunay triangulation involving the move
disk and its nearest and next nearest neighbors. We com
the connectivity of this Delaunay triangulation with that
the reference lattice~a copy of the initial state! around the
same particle. If any old bond is broken and a new bo
formed ~Fig. 4! we reject the move since one can show th
this is equivalent to a dislocation-antidislocation pair se
rated by one lattice constant involving dislocations of t
smallest Burger’s vector. Note that~i! only dislocation pairs
of the smallest Burger’s vector are eliminated; dislocatio
of higher topological charge cost higher energy and may
be relevant at the densities where a melting transition is u
ally observed;~ii ! other fluctuations, e.g., long waveleng
phonon fluctuations and fluctuations of the amplitude of
order parameter~spontaneous production of voids in the sy
tem! are not eliminated as long as they preserve connectiv
The fraction of movesp which are rejected because the
violate the constraint is stored. Next, we need a method
calculate elastic constants accurately in our simulatio
making sure that we extrapolate to the thermodynamic lim
Such a method has been recently developed by us and
cussed in detail elsewhere@21#. Below we include a brief
description for completeness.

Since we have a dislocation free system, we can alw
associate an ideal, static, ‘‘reference’’ lattice pointR with
every hard disk all through the simulation and calcul
uR(t)5R(t)2R. Microscopic strainse i j (R) can be calcu-
lated now for every reference lattice pointR. Next, we
coarse grain~average! the microscopic strains within a sub
box of sizeLb ,

ē i j 5Lb
2dELb

ddr e i j ~r !

and calculate the (Lb dependent! quantities,

S
11

Lb 5^ē1ē1&,

~5!
S

22

Lb 5^ē2ē2&,

FIG. 4. Typical move which attempts to change the coordinat
number and therefore the local connectivity around the central
ticle. Such moves were rejected in our simulation.
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The sub-blocks may be constructed by simply dividing t
entire box of sizeL into an integral number of smaller boxe
as done in this calculation so thatL/Lb5 an integer, or mul-
tiple sub-boxes of arbitrary sizeLb<L can be constructed
within the simulation cell, as in Ref.@21#. Lastly, quantities
in the thermodynamic limit are obtained by fitting data to t
form,

Sgg
Lb 5Sgg

` H C~xL/j!2FC~L/j!2CS a

L D 2Gx2J 1O~x4!,

where the indexg51,2,3 the function,C(a), is defined
as

C~a!5
2

p
a2E

0

1E
0

1

dxdy K0~aAx21y2!.

K0 is a Bessel function andj is the correlation length for the
ee correlations.

The elastic constants in the thermodynamic limit are o
tained from the setB51/2S11

` andme f f51/2S22
` 51/2S33

` .
The last two equations forme f f serve as a stringent interna
consistency check and yields an accurate error estimate
this quantity. There are two ways to obtain the fluctuatio
Sgg

Lb for every sub-block sizeLb in Eq. ~5!. One can either
accumulatê egeg& directly or construct histograms of th
block strainseg and obtainSgg by fitting Gaussian profiles to
the normalized probability distributions ofeg for every block
sizeLb . Again this constitutes another excellent consisten
check and a measure of the statistical uncertainties involv
We accumulate data till all these uncertainties are less th
percent. Residual finite size effects obtained by repeating
entire procedure forN52016 and 4012 particles for a few
densities are also seen to be within the same limit of ac
racy.

There are several distinct advantages of our method
general our method works for any system for which insta
taneous configurations can be obtained~for example, either
from other simulations or from real experiments!. We obtain
directly the finite size scaled results from a single simulati
As discussed above there are a number of stringent inte
consistency checks that can be used to obtain very accu
data. In spite of this our method is easy to use and the c
putational complexity is not more than calculating for, e.
pair correlation functions. This method can be easily adap
for calculating local strains and stresses ininhomogeneous
situations.

III. RESULTS AND DISCUSSION

Our results for the elastic moduli, the pressure, and
fraction of movesp rejected due to the topological constrai
discussed above are given in Table I as a function of dens
In Fig. 5 we compare our results for the bulk and she
moduli with the data of two previous simulations of Ref.@10#
and Ref.@25#. We also compare our simulation results
estimates from free volume theory@22# in the simplest, in-
dependent cell approximation. Within this approach t
Helmholtz free energy per particle is given byf 5 log(vf),

n
r-
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TABLE I. PressureP, bulk modulusB, effective shear modulusme f f , ratio of moves rejected due to th
zero dislocation density constraintp, and the~unrenormalized! coupling constantK/16p as a function of the
densityr. The total number of configurations used for the averagesNc is also listed. The pressureP was
obtained by integratingB below r51.049.

r Nc P B me f f p3102 K/16p

0.88 105 8.117 27.69 11.63 0.36823 0.8550
0.9 105 8.777 32.47 13.87 0.20358 0.9925
0.905 105 8.957 33.67 14.46 0.17386 1.0271
0.910 105 9.145 35.38 15.22 0.14469 1.0744
0.915 105 9.342 37.09 15.99 0.11706 1.1225
0.920 105 9.545 38.48 16.88 0.09532 1.1722
0.925 105 9.759 40.67 17.88 0.07513 1.2337
0.930 105 9.982 42.72 18.90 0.05967 1.2948
0.935 105 10.217 44.69 19.91 0.04643 1.3538
0.94 23104 10.462 46.85 21.45 0.03432 1.4382
0.95 105 10.996 52.14 24.10 0.01855 1.5945
0.96 23104 11.586 59.67 27.61 0.00901 1.8067
0.97 105 12.251 67.45 31.59 0.00370 2.0379
0.98 23104 13.003 79.20 36.62 0.00137 2.3479
0.99 105 13.862 89.98 42.60 0.00041 2.6835
1.0 49400 14.843 104.78 50.25 0.00009 3.1206
1.02 105 17.301 148.88 69.91 0.0 4.2854
1.04 105 20.714 212.02 102.02 0.0 6.0857
1.06 105 319.07 158.69 0.0 9.1874
1.08 105 531.24 268.02 0.0 15.1567
1.1 105 1018.49 526.94 0.0 29.0094
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where the available free volume,v f5(a21)2/rc and the
close packed densityrc52/A3. Other thermodynamic quan
tities can be obtained by successive differentiation, viz.,

P5r
x

x21
,

B5PH 11
1

2~x21!J , ~6!

me f f5
B

2
,

where x5Arc /r and we have used the Cauchy relatio
strictly valid only for a harmonic solid@21#, for our estimate
of the effective shear modulusme f f . Note that the free vol-
ume elastic moduli and the pressure diverge@22# as r
→rc .

We see that our bulk modulus interpolates smoothly fr
the free volume values at high densities to those of Ref.@25#
at low densities. Overall, the differences between the th
sets of data are small. Our values for the shear mod
agrees well with the free volume results at high density,
at low densities they are smaller than all other estima
though close to those of Ref.@10#. Once the elastic constan
are obtained we can analyze in detail the two compe
scenarios, viz., first order solid-liquid transition or KTHN
transition to the hexatic phase.
,

e
us
t
s

g

A. Equation of state, free energy, and first order melting

First of all, we should point out that our constrained sim
lations allow us to obtain elastic constants up to a density
low as r50.88, far below the densityr50.899 where the
transition to the liquid is expected to occur@8#, which im-
plies that amplitude and phonon fluctuations cannot dest
lize the solid. So an ordinary second order transition is ru
out. However, there can always be a first order transition
the free energy of the liquid becomes lower than that of
perfect solid.

In order to investigate this question we obtain the eq
tion of stateP(r) and the Gibbs free energyg(P) of the
liquid and the solid.

To obtain the equation of state of the liquid we use t
semiempirical, accurate, analytical form by Santoset al.
@23#, which is in excellent agreement with computer simu
tion data@24#. The pressure is given by

P/r5H 122h1
2hc21

hc
2

h2J 21

, ~7!

where the packing fractionh5(p/4)r andhc is the packing
fraction at close packing. The Helmholtz free energy p
particle,

f ~r!5E
0

h
dh8

P/r21

h8
1 f id , ~8!

where the ideal gas Helmholtz free energy per particlef id
5 log(r)21. The Gibbs free energyg(P) is then obtained by
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the standard Legendre transformation,g5 f 1P/r. In addi-
tion we use the data of Jaster@8# in the transition region to
obtain a revised estimate of the free energy. This is done
fitting Jaster’s data forP(r) to a polynomial forr.0.85
which matches the results of Santoset al. @23# for r<0.85.
From this equation of state we can obtain the Helmholtz
hence the Gibbs free energy by integrating starting from
value given by Eq.~7! at r50.85.

The equation of state for the solid is obtained by integr
ing our bulk modulus values using the result of Bladon a
Frenkel @25# at r51.049 as the reference pressureP
522.00). The Gibbs free energy is obtained by further in
gration again using the result obtained for the free energ
Ref. @25# at r51.049 as a reference (g525.64).

The possible~first order! transitions can be located b
equating the Gibbs free energies. The slope discontin
gives the~inverse! density difference of coexisting phase
We find immediately that all the free energies have v
similar slopes~see Fig. 6! so that any possible first orde
transition would have only a small jump in the density.
also implies that small errors in the free energy of our ref
ence state makes a large difference in the co-existence
sure. We have therefore reduced the reference free energ

FIG. 5. Elastic moduli in the thermodynamic limit:~a! bulk B
and~b! shearme f f . L, our work ~error bars are much smaller tha
the symbol size!; 1, Wojciechowski and Bran´ka @10#, solid line;
free volume theory@22#, dashed line; polynomial fit given by Bla
don and Frenkel@25#.
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a small amount (,4%) so that the coexisting pressureP1
59.2—the value found in most recent simulations@6,8#.

Using the semiempirical free energy of Santoset al. @23#
we obtain a ~metastable! first order transition withr l
50.871 andrs50.912 as observed in early simulation
@2,4#. Of course, this estimate ofr l is only a lower bound, as
the theory of Ref.@23# is expected to overestimate the fre
energy. The free energy from Jaster’s data is lower and
most completely parallel to that of the solid, suggesting
very weak first order transition if at all. In this case we ge
slope difference less than 1.3%~viz., r l50.899 andrs
50.911)—well within our numerical accuracy~Fig. 6!.

B. Core energyEc and the KTHNY transition

Next, we analyze our results in the light of the KTHN
theory @9#. The unrenormalized K516p at rc50.904 (Pc
58.92) ~see Fig. 2, lower arrow! which implies that a weak
first order transition from solid to liquid preempts
KTHNY-solid-hexatic transition. However, the value ofK is
renormalized by the presence of dislocations. We can e
mate the extent of this renormalization from our data.

The dislocation pair probability

pd5exp~22Ec!Z~K !, ~9!

whereZ(K) is the ‘‘internal partition function’’ of a dislo-
cation pair and is given by@26#,

Z~K !5
2pA3

K/8p21
I 0S K

8p DexpS K

8p D , ~10!

where we have set the core radiusr c5a, the lattice param-
eter. The core energy of a dislocation is a difficult quantity
obtain from a simulation, though it has been attempted in
past @25,26#. In our case, an ansatz, which gives excelle
results in the 2DXY model@18#, and identifies the rejection
ratio p as p5pd can be used to obtainEc , see Fig. 7.
Throughout the relevant regionEc is safely above the limit
Ec.2.7 @17,16#. At the transition theEc;6 which is in good
agreement the results of Murray and Van Winkle@27# (Ec

FIG. 6. Gibbs free energiesg(P) as a function of pressure
dotted line; metastable liquid using a semiempirical form of San
et al. @23#; bold solid line, using Jaster’s results@8#; series of light
solid lines, Gibbs free energy of the solid where we reduced
reference free energy from the value quoted by Bladon and Fre
@25# ~see text! by 3.3%, 3.35%, and 3.4%.
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;5.6) from experiments on 2D charge stabilized collo
and of Zahnet al. @28# (Ec;4) for paramagnetic colloids.

Finally, to obtain the melting density we use the unren
malized K and y5exp@2Ec(K)# as inputs to the KTHNY
recursion relations@Eqs.~4!# and solve them numerically b
a standard Euler discretization to obtainKR , see Fig. 8. The
melting density obtained from our value forKR is rc
50.916 andPc59.39~Fig. 2, upper arrow!. This means that
the KTHNY transition now preceeds the first order transiti
and the solid transforms to the hexatic phase.

IV. SUMMARY AND CONCLUSION

We have simulated a dislocation-free triangular solid
hard disks using a constrained Monte Carlo algorithm. Us
a block analysis scheme we calculate the finite size sc
elastic constants of this solid. From the number of times
system attempts to violate our no-dislocation constraint
can obtain~virtual! dislocation probabilities and hence th
core energy. The absence of a phase transitions in our sy
implies that all correlation lengths remain finite and the pro
lem of slow equilibration of defect densities is eliminated.
effect we obtain highly accurate values of the unrenorm
ized coupling constantK and the defect fugacityy which can
be used as inputs to the KTHNY recursion relations. N
merical solution of these recursion relations then yields
renormalized couplingKR and hence the density and pre
sure of the solid to hexatic melting transition.

We can draw a few very precise conclusions from o
results. Firstly, a solid without dislocations is stable agai
fluctuations of the amplitude of the solid order parameter
against long wavelength phonons. So any melting transi
mediated by phonon or amplitude fluctuation is ruled out
our system. Secondly, the core energyEc.2.7 at the transi-

FIG. 7. Calculated core energyEc(L) as a function ofK/16p.
The straight line is a linear least square fit. Note thatEc.2.7
throughout.
.
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tion so KTHNY perturbation theory is valid though numer
cal values of nonuniversal quantities may depend on the
der of the perturbation analysis. Thirdly, solution of th
recursion relations shows that a KTHNY transition atPc
59.39 preemptsthe first order transition atP159.2. Since
these transitions, as well as the hexatic-liquid KTHNY tra
sition lies so close to each other, the effect of, as yet
known, higher order corrections to the recursion relatio
may need to be examined in the future@18#. Due to this
caveat, our conclusion that a hexatic phase exists over s
region of density exceedingr50.899 still must be taken a
preliminary. Also, in actual simulations, crossover effec
near the bicritical point, where two critical lines correspon
ing to the liquid-hexatic and hexatic-solid transitions mee
first order liquid-solid line~see for, e.g., Ref.@29# for a lat-
tice model where such a situation is discussed! may compli-
cate the analysis of the data, which may, in part, explain
confusion which persists in the literature on this subject.
the systems with softer potentials@30#, the signature of a
KTHNY transition appears to be more pronounced@31#. In
the future, we would like to analyze more complicated s
tems, e.g., laser-induced reentrant melting of char
stabilized colloids@32#, and the influence of other defec
variables, e.g., grain boundaries@33# on elastic constants an
melting behavior.
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FIG. 8. Renormalization ofK/16p vs densityr for the hard disk
solid. The renormalizedKR/16p ~bold solid line! is obtained from
the recursion relations Eq.~4! which were solved by the Euler dis
cretization using a step sized l 50.001 up to a finall 5100, starting
from the initial input~light solid line!. Dotted line:K516p.
e,
@1# N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H
Teller, and E. Teller, J. Chem. Phys.21, 1087~1953!.

@2# B. J. Alder and T. E. Wainwright, Phys. Rev.127, 359~1962!.
@3# The simplicity of the hard disk potential allows for extreme
efficient simulation algorithms. See, for example, M. Isob
Int. J. Mod. Phys. C10, 1281 ~1999!, for a recentO(log N)
algorithm for hard disk molecular dynamics.

@4# W. W. Wood, inPhysics of Simple Liquids, edited by H. N. V.



B

ev

. E

ys.
,

m.

s.

. B

ys.

PRE 61 6301ELASTIC MODULI, DISLOCATION CORE ENERGY, . . .
Temperley, J. S. Rowlinson, and G. S. Rushbrooke~North-
Holland, Amsterdam, 1968!, Chap. 5.

@5# J. Lee and K. Strandburg, Phys. Rev. B46, 11 190~1992!.
@6# J. A. Zollweg and G. V. Chester, Phys. Rev. B46, 11 186

~1992!.
@7# T. V. Ramakrishnan, Phys. Rev. Lett.42, 795 ~1979!; X. C.

Zeng and D. W. Oxtoby, J. Chem. Phys.93, 2692~1990!; Y.
Rosenfeld, Phys. Rev. A42, 5978 ~1990!; V. N. Ryzhov and
E. E. Tareyeva, Phys. Rev. B51, 8789~1995!.

@8# A. Jaster, Phys. Rev. E59, 2594~1999!.
@9# J. M. Kosterlitz and D. J. Thouless, J. Phys. C6, 1181~1973!;

B. I. Halperin and D. R. Nelson, Phys. Rev. Lett.41, 121
~1978!; D. R. Nelson and B. I. Halperin, Phys. Rev. B19, 2457
~1979!; A. P. Young,ibid. 19, 1855~1979!; K. J. Strandburg,
Rev. Mod. Phys.60, 161 ~1988!; H. Kleinert,Gauge Fields in
Condensed Matter~Singapore, World Scientific, 1989!.

@10# K. W. Wojciechowski and A. C. Bran´ka, Phys. Lett. A134,
314 ~1989!.

@11# M. Bates and D. Frenkel~unpublished!.
@12# H. Weber, D. Marx, and K. Binder, Phys. Rev. B51, 14 636

~1995!; H. Weber and D. Marx, Europhys. Lett.27, 593
~1994!.

@13# A. C. Mitus, H. Weber, and D. Marx, Phys. Rev. E55, 6855
~1997!.

@14# A. Zippelius, B. I. Halperin, and D. R. Nelson, Phys. Rev.
22, 2514~1980!.

@15# J. F. Ferna´ndez, J. J. Alonso, and J. Stankiewicz, Phys. R
Lett. 75, 3477 ~1995!; H. Weber and D. Marx,ibid. 78, 398
~1997!; J. F. Ferna´ndez, J. J. Alonso, and J. Stankiewicz,ibid.
78, 399 ~1997!.

@16# Y. Saito, Phys. Rev. Lett.48, 1114 ~1982!; Phys. Rev. B26,
6239 ~1982!.
.

@17# K. J. Standburg, Phys. Rev. B34, 3536~1986!.
@18# S. Sengupta, P. Nielaba, and K. Binder, Europhys. Lett.~to be

published! ~e-print cond-mat/0001309!.
@19# F. J. Wegner, Z. Phys.206, 465 ~1967!.
@20# F. Wegner, J. Math. Phys.12, 2259~1971!.
@21# S. Sengupta, P. Nielaba, M. Rao, and K. Binder, Phys. Rev

61, 1072~2000!.
@22# W. G. Hoover, W. T. Ashurst, and R. Grover, J. Chem. Ph

57, 1259~1972!; W. G. Hoover, N. E. Hoover, and K. Hanson
ibid. 70, 1837~1979!; W. G. Hoover and F. H. Ree,ibid. 49,
3609 ~1968!.

@23# A. Santos, M. Lo´pez de Haro, and S. Bravo Yuste, J. Che
Phys.103, 4622~1995!.

@24# B. J. Alder, W. G. Hoover, and D. A. Young, J. Chem. Phy
49, 3688~1968!.

@25# P. Bladon and D. Frenkel~unpublished!.
@26# D. S. Fisher, B. I. Halperin, and R. Morf, Phys. Rev. B20,

4692 ~1979!.
@27# C. A. Murray and D. H. Van Winkle, Phys. Rev. Lett.58, 1200

~1987!.
@28# K. Zahn, R. Lenke, and G. Maret, Phys. Rev. Lett.82, 2721

~1999!.
@29# W. Janke and H. Kleinert, Phys. Rev. Lett.61, 2344~1988!.
@30# J. Q. Broughton, G. H. Gilmer, and J. D. Weeks, Phys. Rev

25, 4651~1982!.
@31# K. Bagchi, H. C. Andersen, and W. Swope, Phys. Rev. E53,

3794 ~1996!.
@32# Q.-H. Wei, C. Bechinger, D. Rudhardt, and P. Leiderer, Ph

Rev. Lett.81, 2606~1998!.
@33# S. T. Chui, Phys. Rev. Lett.48, 933 ~1982!; Phys. Rev. B28,

178 ~1983!.


